«Согласовано» Зам. директора по ВР

Галиахметова Ч.И.

Habyens 2022 r.



## Рабочая программа кружка "Юный техник"

Направление: техническое Возраст 12-13 лет

Составитель учитель первой квалификационной категории муниципального бюджетного общеобразовательного учреждения «Ямашурминская средняя общеобразовательная школа Высокогорского муниципального района Республики Татарстан» Сафиуллин Рузаль Габдулкаюмович

Принято на заседании педагогического совета протокол № от 26 общеть 2022 г.

| «Согласовано»        | «Утверждено»        |
|----------------------|---------------------|
| Зам. директора по ВР | Директор МБОУ       |
|                      | «Ямашурминская СОШ» |
| Галиахметова Ч.И.    | Л.Г.Сафиуллин       |
|                      | Приказ № / от       |
| 2022 г.              | 2022 г.             |

## Рабочая программа кружка "Юный техник"

Направление: техническое Возраст 12-13 лет

Составитель учитель первой квалификационной категории муниципального бюджетного общеобразовательного учреждения «Ямашурминская средняя общеобразовательная школа Высокогорского муниципального района Республики Татарстан» Сафиуллин Рузаль Габдулкаюмович

> Принято на заседании педагогического совета протокол № 2022 г.

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Робототехника — это создание и применение роботов, других средств робототехники и основанных на них технических систем и комплексов различного назначения.

Возникнув на основе кибернетики и механики, робототехника, в свою очередь, породила новые направления развития и самих этих наук.

Робототехника — это проектирование и конструирование всевозможных интеллектуальных механизмов-роботов, имеющих модульную структуру и обладающих мощными микропроцессорами.

Программа по Робототехнике предусматривает работу с образовательными конструкторами по робототехнике Lego Education. Для создания программы, по которой будет действовать модель, используется специальная среда разработки программ Lego Education Spike 2.0.8.

Образовательная программа по робототехнике - это один из интереснейших способов изучения компьютерных технологий и программирования. Во время занятий, обучающиеся научатся проектировать, создавать и программировать роботов. Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование.

В распоряжении детей будут предоставлены конструкторы, оснащенные специальным микропроцессором, позволяющим создавать программируемые модели роботов. С его помощью обучаемый может запрограммировать робота на выполнение определенных функций.

Образовательный кружок по робототехнике научно-технической направленности.

В наше время робототехники и компьютеризации необходимо учить ребенка решать задачи с помощью автоматов, которые он сам может спроектировать, защищать свое решение и воплотить его в реальной модели, т.е. непосредственно сконструировать и запрограммировать.

Актуальность данного кружка заключается в том, что в настоящий момент в России развиваются нано технологии, электроника, механика и программирование. т.е. созревает благодатная почва для развития компьютерных технологий и робототехники.

В педагогической целесообразности этого кружка не приходиться сомневаться, т.к. дети научатся объединять реальный мир с виртуальным, в процессе конструирования и программирования получат дополнительное образование в области физики, механики, электроники и информатики.

Программа кружка рассчитана на детей в возрасте от 10 до 15 лет. Сроки реализации программы 1 год.

Цель программы: развитие творческих способностей и формирование раннего профессионального самоопределения подростков и юношества в процессе конструирования и проектирования.

В результате изучения данного курса, обучающиеся:

- ✓ получат первоначальные знания по устройству робототехнических устройств;
- ✓ овладеют основными приемами сборки и программирования робототехнических средств;
- ✓ сформируют общенаучные и технологические навыки конструирования и проектирования;
- ✓ ознакомятся с правилами безопасной работы с инструментами необходимыми при конструировании робототехнических средств.

#### Получат возможность:

- ✓ формировать творческое отношение по выполняемой работе;
- ✓ воспитывать умение работать в коллективе;
- ✓ развивать творческую инициативу и самостоятельность;
- ✓ развивать психофизиологические качества: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.

#### Основными принципами обучения являются:

- ✓ Научность предопределяет сообщение обучаемым только достоверных, проверенных практикой сведений, при отборе которых учитываются новейшие достижения науки и техники.
- ✓ Доступность- предусматривает соответствие объема и глубины учебного материала уровню общего развития учащихся в данный период, благодаря чему, знания и навыки могут быть сознательно и прочно усвоены.
- ✓ Связь теории с практикой- необходимо вести обучение так, чтобы обучаемые могли сознательно применять приобретенные ими знания на практике.
- ✓ Воспитательный характер обучения- процесс обучения является воспитывающим, ученик не только приобретает знания и нарабатывает навыки, но и развивает свои способности, умственные и моральные качества.
- ✓ Сознательность и активность обучения- в процессе обучения все действия, которые отрабатывает учащийся, должны быть обоснованы. Нужно учить, обучаемых, критически осмысливать, и оценивать факты, делая выводы, разрешать все сомнения с тем, чтобы процесс усвоения и наработки необходимых навыков происходили сознательно, с полной убежденностью в правильности обучения. Активность в обучении предполагает самостоятельность, которая достигается хорошей теоретической и практической подготовкой и работой педагога.
- ✓ Наглядность- объяснение техники сборки робототехнических средств на конкретных изделиях и программных продукта. Для наглядности применяются существующие материалы, а также материалы своего изготовления.
- ✓ Систематичность и последовательность- учебный материал дается по определенной системе и в логической последовательности с целью лучшего

его освоения. Как правило, этот принцип предусматривает изучение предмета от простого к сложному, от частного к общему.

- ✓ Прочность закрепления знаний, умений и навыков- качество обучения зависит от того, насколько прочно закрепляются знания, умения и навыки учащихся. Не прочные знания и навыки обычно являются причинами неуверенности и ошибок. Поэтому закрепление умений и навыков должно достигаться неоднократным целенаправленным повторением и тренировкой.
- ✓ Индивидуальный подход обучении в процессе обучения педагог исходит из индивидуальных особенностей детей (уравновешенный, неуравновешенный, с хорошей памятью или не очень, с устойчивым вниманием или рассеянный, с хорошей или замедленной реакцией, и т.д.) и, опираясь на сильные стороны ребенка, доводит его подготовленность до уровня общих требований.

На занятиях используются различные формы организации образовательного процесса:

- ✓ фронтальные (беседа, лекция, проверочная работа);
- ✓ групповые;
- ✓ индивидуальные (инструктаж, разбор ошибок, индивидуальная сборка робототехнических средств).

Для предъявления учебной информации используются следующие методы:

- ✓ наглядные;
- ✓ словесные;
- ✓ практические.

Для стимулирования учебно-познавательной деятельности применяются методы:

- соревнования;
- поощрение.

Для контроля и самоконтроля за эффективностью обучения применяются методы:

- предварительные (анкетирование, диагностика, наблюдение, опрос);
- текущие (наблюдение, ведение таблицы результатов);
- тематические (опрос);
- итоговые (соревнования).

## ОСНОВНЫЕ НАПРАВЛЕНИЯ И СОДЕРЖАНИЕ ДЕЯТЕЛЬНОСТИ

Теоретические занятия по изучению робототехники предусматривают

- выдачу материалов для самостоятельной работы и повторение материала или указывается где можно взять этот материал;
- теоретический материал педагог дает обучаемым, помимо вербального, классического метода обучения, при помощи различных современных

технологий в образовании (аудио, видео лекции, экранные видео лекции, презентации, интернет, электронные учебники);

- проверка полученных знаний.

## Практические занятия проводятся следующим образом:

- педагог показывает конечный результат занятия, т.е. заранее готовит (собирает робота или его часть) практическую работу;
- далее педагог обучает последовательности сборки узлов робота, используя различные варианты;
- далее обучаемые самостоятельно (и, или) в группах проводят сборку узлов робота;
- практические занятия начинаются с правил техники безопасности при работе с различным инструментом и с электричеством и разбора допущенных ошибок во время занятия в обязательном порядке.

#### ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ

По окончанию курса обучения учащиеся овладеют:

- ✓ теоретическими основами создания робототехнических устройств;
- ✓ элементной базой при помощи которой собирается устройство;
- ✓ порядок взаимодействия механических узлов робота с электронными и оптическими устройствами;
- ✓ порядок создания алгоритма программы действия робототехнических средств;
- ✓ правила техники безопасности при работе с инструментом и электрическими приборами.

#### Получат возможность:

- ✓ проводить сборку робототехнических средств с применением конструкторов;
- ✓ создавать программы для робототехнических средств при помощи специализированных визуальных конструкторов.

Ожидаемые результаты программы кружка и способы определения их результативности заключаются в следующем:

- ✓ результаты работ учеников будут зафиксированы на фото и видео в момент демонстрации созданных ими роботов из имеющихся в наличии учебных конструкторов по робототехнике;
- ✓ фото и видео материалы по результатам работ, обучающихся будут размещаться на сайте школы в разделе дополнительного образования.

#### МЕХАНИЗМ ОТСЛЕЖИВАНИЯ РЕЗУЛЬТАТОВ

Предусматриваются различные формы подведения итогов реализации дополнительной образовательной программы:

- олимпиады;
- соревнования;
- участие в районной НПК с проектами по робототехнике.

## УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

| No        | Тема                                               | Часы  |        |        |
|-----------|----------------------------------------------------|-------|--------|--------|
| $\Pi/\Pi$ |                                                    | всего | теория | практ. |
| 1         | Вводное занятие (в том числе техника безопасности) | 1     | 1      | -      |
| 2         | Тема 1.                                            | 2     | 1      | 1      |
|           | Робототехника для начинающих, базовый уровень      |       |        |        |
| 3         | Тема 2.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 1. Вертолет.                           |       |        |        |
| 4         | Тема 3.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 2. Лебедка.                            |       |        |        |
| 5         | Тема 4.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 3. Центрифуга.                         |       |        |        |
| 6         | Тема 5.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 4. Светофор                            |       |        | ŕ      |
| 7         | Тема 6.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 5. Магнитный замок.                    |       |        | ŕ      |
| 8         | Тема 7.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 6. Конвейер                            |       |        |        |
| 9         | Тема 8.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 7. Вращающийся стол                    |       |        |        |
| 10        | Тема 9.                                            | 1     | 0,5    | 0,5    |
|           | Эксперимент 8. Смеситель                           |       |        |        |
| 11        | Тема 10.                                           | 1     | 0,5    | 0,5    |
|           | Эксперимент 9. Стиральная машина                   |       |        |        |
| 12        | Тема 11.                                           | 1     | 0,5    | 0,5    |
|           | Эксперимент 10. Мощный световой сканер             |       |        |        |
| 13        | Тема 12.                                           | 1     | 0,5    | 0,5    |
|           | Эксперимент 11. Банкомат                           |       |        |        |
| 14        | Тема 13.                                           | 1     | 0,5    | 0,5    |
|           | Эксперимент 12. Токарный автомат                   |       |        |        |
| 15        | Тема 14.                                           | 1     | 0,5    | 0,5    |
|           | Эксперимент 13. Автоматическая дверь               |       |        |        |
| 16        | Тема 15.                                           | 2     | 1      | 1      |
|           | Эксперимент 14. Лифт                               |       |        |        |
| 17        | Тема 16.                                           | 2     | 1      | 1      |
|           | Эксперимент 15. Автомобиль                         |       |        |        |
| 18        | Тема 17.                                           | 2     | 1      | 1      |
|           | Эксперимент 16. Промышленный робот                 |       |        |        |
| 19        | Тема 18.                                           | 2     | 1      | 1      |
|           | Эксперимент 17. Манипулятор                        |       |        |        |
|           | Тема 20. Импровизация 1                            | 2     | 1      | 1      |
|           | Тема 21. Импровизация 2                            | 3     | 1      | 2      |
|           | Тема 22. Импровизация 3                            | 3     | 1      | 2      |
|           | Представление результата - робота                  | 3     | 1      | 2      |
|           | ИТОГО                                              | 35    | 16,5   | 18,5   |

#### СОДЕРЖАНИЕ ПРОГРАММЫ

#### Вводное занятие

#### Теория:

Рассказ о развитии робототехники в мировом сообществе и в частности в России.

Показ видео роликов о роботах и роботостроении.

Правила техники безопасности.

#### Тема 1.

#### Теория:

- Робототехника для начинающих, базовый уровень
- Основы робототехники.
- Понятия: датчик, интерфейс, алгоритм и т.п.

Алгоритм программы представляется по принципу конструктора. Из визуальных блоков составляется программа. Каждый блок включает конкретное задание и его выполнение. По такому же принципу собирается сам робот из различных комплектующих узлов (датчик, двигатель, зубчатая передача и т.д.) узлы связываются при помощи интерфейса (провода, разъемы, системы связи, оптику и т.д.)

#### Практика:

Знакомство с конструктором.

- Твой конструктор (состав, возможности)
- Основные детали (название и назначение)
- Датчики (назначение)
- Двигатели
- Контроллер POWERONCO
- Адаптер питания
- Как правильно разложить детали в наборе

В конструкторе по робототехнике Модель XPO-001 применены новейшие технологии робототехники: современный 32 — битный программируемый микроконтроллер; программное обеспечение, с удобным интерфейсом на базе образов и с возможностью перетаскивания объектов, а также с поддержкой интерактивности; чувствительные сенсоры и интерактивные сервомоторы; разъемы для USB подключений. Различные сенсоры необходимы для выполнения определенных действий. Определение цвета и света. Обход препятствия. Движение по траектории и т.д.

#### Тема 2.

## Практика:

Собираем модель Вертолёта.

- Подключение электромотора
- Загрузка программы

#### Теория:

-Знакомство со свойствами основных узлов Вертолёта.

Инструкция в комплекте с комплектующими.

#### Тема 3.

#### Практика:

Собираем модель Лебедка.

- Подключение электромотор
- Использование муфты с червячной шестернёй.
- Шестерёнчатая передача крутящего момента.
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов Лебедки, применение аналогичных механизмов и узлов механизма в жизни и быту человека. Инструкция в комплекте с комплектующими.

#### Тема 4.

#### Практика:

Собираем модель Центрифуга.

- Использование углового редуктора с выходным валом 1:1

#### Теория:

- Знакомство с основными узлами Центрифуги и центробежной силой.
- Использование аналогичных механизмов в жизни и быту человека. Инструкция в комплекте с комплектующими.

#### Тема 5.

## Практика:

Собираем модель Светофор

- Подключение электроламп
- Загрузка программы

## Теория:

-Знакомство со свойствами светофора и применение его в жизни. Инструкция в комплекте с комплектующими.

#### Тема 6.

#### Практика:

Собираем модель Магнитный замок.

- Подключение магнитных датчиков
- Подключение электроламп
- Загрузка программы

## Теория:

- Знакомство со свойствами основных узлов магнитного замка.
- Использование аналогичных механизмов в жизни и быту человека.

Инструкция в комплекте с комплектующими.

#### Тема 7.

## Практика:

Собираем модель Конвейер.

- Подключение электромотора

- Подключение электроламп
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов конвейера.
- Использование аналогичных механизмов на практики производств.

Инструкция в комплекте с комплектующими.

#### Тема 8.

## Практика:

Собираем модель Вращающийся стол

- Подключение магнитных датчиков
- Подключение электроламп
- Подключение электромотора
- Использование углового и прямого редуктора
- Загрузка программы

#### Теория:

- -Знакомство со свойствами основных узлов вращающегося стола.
- Использование аналогичных механизмов на практики.

Инструкция в комплекте с комплектующими.

#### Тема 9.

#### Практика:

Собираем модель Смеситель

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение электроламп
- Подключение датчика касания
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов смеситель.
- Использование аналогичных механизмов в быту и на практики производств. Инструкция в комплекте с комплектующими.

#### Тема 10.

#### Практика:

Собираем модель Стиральная машина

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение электроламп
- Подключение датчика касания
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов стиральная машина.
- Использование аналогичных механизмов в быту и на практики.

Инструкция в комплекте с комплектующими.

#### Тема 11.

#### Практика:

Собираем модель Мощный световой сканер

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение датчика освещенности
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов светового сканера.
- Применение аналогичных механизмов на практики в производстве.

Инструкция в комплекте с комплектующими.

#### Тема 12.

#### Практика:

Собираем модель Банкомат

- Подключение электромотора
- Подключение электролампы
- Подключение датчика освещенности
- Использование углового и прямого редуктора
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов банкомата.
- Применение аналогичных механизмов на практики.

Инструкция в комплекте с комплектующими.

#### Тема 13.

#### Практика:

Собираем модель Токарный автомат

- Подключение электромотора
- Подключение датчика магнитного поля
- Использование углового и прямого редуктора
- Использование ходового винта
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов токарного станка.
- Применение аналогичных механизмов на производствах.

Инструкция в комплекте с комплектующими.

#### Тема 14.

#### Практика:

Собираем модель Автоматическая дверь

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение электроламп
- Подключение датчика касания

- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов автоматической двери.
- Применение механизма автоматических дверей в быту и производстве Инструкция в комплекте с комплектующими.

#### Тема 15.

#### Практика:

Собираем модель Лифт

- Подключение электромотора
- Подключение датчика магнитного поля
- Подключение электроламп
- Подключение датчика касания
- Загрузка программы

#### Теория:

- -Знакомство со свойствами основных узлов лифта.
- Применение механизма лифта в быту и производстве Инструкция в комплекте с комплектующими.

#### Тема 16.

#### Практика:

Собираем модель Автомобиль

- Подключение электромотора
- Подключение датчика магнитного поля
- Подключение датчика освещённости
- Загрузка программы

#### Теория:

- -Знакомство со свойствами основных узлов автомобиля.
- Применение аналогичного механизма в быту и производстве Инструкция в комплекте с комплектующими.

#### Тема 17.

#### Практика:

Собираем модель Промышленный робот

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение электромагнит
- Подключение датчика касания
- Подключение датчика числа оборотов
- Использование ходового винта
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов промышленным роботом.
- Применение аналогичных механизмов в производстве Инструкция в комплекте с комплектующими.

#### Тема 18.

#### Практика:

Собираем модель Манипулятор

- Подключение электромотора
- Использование углового и прямого редуктора
- Подключение датчика магнитного поля
- Подключение датчика числа оборотов
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов манипулятора.
- Применение аналогичных механизмов в производстве Инструкция в комплекте с комплектующими.

#### Тема 19.

#### Практика:

Собираем модель Станок с ЧПУ

- Подключение электромотора
- Использование прямого редуктора
- Подключение датчика магнитного поля
- Подключение датчика числа оборотов
  - Использование ходовых винтов
- Загрузка программы

#### Теория:

- Знакомство со свойствами основных узлов станка.
- Применение аналогичных механизмов в производстве Инструкция в комплекте с комплектующими.

#### Тема 20.

#### Практика:

Собираем импровизированную модель робототехники  $N \ge 1$ 

- Подключение электромотора
- Загрузка программы
- Использование углового и прямого редуктора
- Подключение электроламп

## Теория:

- Знакомство со свойствами основных узлов.
- Применение аналогичных механизмов в производстве и быту
- Изучение команд программирования электроламп и электромотора

#### Тема 21.

## Практика:

Собираем импровизированную модель робототехники N2

- Подключение электромотора
- Загрузка программы
- Использование углового и прямого редуктора
- Подключение электроламп
- Подключение датчика касания

- Подключение датчика электромагнитного поля

#### Теория:

- Знакомство со свойствами основных узлов.
- Применение аналогичных механизмов в производстве и быту
- Изучение команд программирования датчика касания и датчика электромагнитного поля

#### Тема 22.

#### Практика:

Собираем импровизированную модель робототехники №3

- Подключение электромотора
- Загрузка программы
- Использование углового и прямого редуктора
- Подключение электроламп
- Подключение датчика касания
- Подключение датчика электромагнитного поля
- Подключение электромагнита
- Подключение датчика освещенности

#### Теория:

- Знакомство со свойствами основных узлов.
- Применение аналогичных механизмов в производстве и быту
- Изучение команд программирования датчика освещенности и электромагнита

#### Тема 23.

#### Практика:

Собираем импровизированную модель робототехники №4

- Подключение электромотора
- Загрузка программы
- Использование углового и прямого редуктора
- Подключение электроламп
- Подключение датчика касания
- Подключение датчика электромагнитного поля
- Подключение электромагнита
- Подключение датчика освещенности
- Подключение датчика числа оборотов

#### Теория:

- Знакомство со свойствами основных узлов.
- Применение аналогичных механизмов в производстве и быту
- Изучение команд программирования датчика числа оборотов и других команд

# 4. Методическое обеспечение дополнительной образовательной программы

Обеспечение программы предусматривает наличие следующих методических видов продукции:

- электронные учебники;
- видео ролики;

## 5. Материально-техническое обеспечение программы.

- 1. Компьютерный класс на момент программирования робототехнических средств, программирования контроллеров конструкторов, настройки самих конструкторов, отладки программ, проверка совместной работоспособности программного продукта и модулей конструкторов.
- 2. Наборы конструкторов:
- конструктора по робототехнике Lego Education Spike 2.0.8–1 шт.
- программный продукт.
- зарядное устройство для конструктора -1 шт.
- контроллеры конструкторов 1 шт.