Муниципальное бюджетное общеобразовательное учреждение «Верхнеуслонская гимназия» Верхнеуслонского муниципального района Республики Татарстан

«Рассмотрено» Руководитель ШМО ______/Арефьева Ю.В./ Протокол № _____ от « ՁՑ » ______ 2019г.

РАБОЧАЯ ПРОГРАММА

по предмету «Физика» 7 – 9 классы

Срок освоения – 3 года

1. Пояснительная записка

Настоящая программа составлена на основе нормативно-правовой базы:

- 1. Федеральный государственный образовательный стандарт основного общего образования (приказ Минобрнауки РФ от 17.12.2010 № 1897);
- 2. Примерная основная образовательная программа основного общего образования (одобрена решением федерального методического объединения по общему образованию, протокол от 08.04.2015 № 1/15);
- 3. Авторская программа по физике для основной школы, 7-9 классы Авторы: А. В. Перышкин, Н. В. Филонович, Е. М. Гутник.

Рабочая программа обеспечена учебниками, включенными в федеральный перечень учебников, рекомендуемых Минобрнауки РФ к использованию (приказ № 345 от 28.12.2018):

Перышкин А. В. «Физика. 7 класс», для общеобразовательных учреждений.

Перышкин А. В. «Физика. 8 класс», для общеобразовательных учреждений.

Перышкин А. В., Е.М. Гутник «Физика. 9 класс», для общеобразовательных учреждений.

Изучение физики направлено на достижение следующих целей:

- усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- организация экологического мышления и ценностного отношения к природе, осознание необходимости применения достижений физики и технологий для рационального природопользования;
- развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний.

Достижение целей рабочей программы по физике обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.
- обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников;
- обеспечение условий, учитывающих индивидуально-личностные особенности обучающихся;
 - внедрение в учебно-воспитательный процесс современных образовательных

технологий, формирующих ключевые компетенции;

- формирование системы ценностей и ее проявлений в личностных качествах.
- В качестве технологий обучения по данной рабочей программе используются:
- *технология развития критического мышления* (формирование умений работать с научным текстом, опираться на жизненный опыт, визуализировать учебный материал, анализировать проблемы современности);
- *технология проблемного обучения* (проблемный характер изложения материала, формирование исследовательской культуры ученика);
- технология коллективного способа обучения, технология обучения в сотрудничестве (развитие коммуникативных навыков обучающихся, умений адаптироваться в разных группах за короткий промежуток времени, работать в системе «взаимоконсультаций»);
- *метод проектов* (развитие творческого потенциала ученика, акцент на личностнозначимую информацию и дифференциацию домашних заданий);

При обучении учащихся по данной рабочей программе используются следующие формы обучения:

- индивидуальная (консультации);
- групповая (учащиеся работают в группах, создаваемых на различных основах: по темпу усвоения при изучении нового материала, по уровню учебных достижений на обобщающих по теме уроках);
- фронтальная (работа учителя сразу со всем классом в едином темпе с общими задачами);
- парная (взаимодействие между двумя учениками с целью осуществления взаимоконтроля).

Система контроляза уровнем учебных достижений учащихся в процессе реализации данной рабочей учебной программы включает контрольные работы.

Текущий контроль проводится в форме тестов, самостоятельных, проверочных работ и физических диктантов (по 10-20 минут) по мере изучения учебного материала.

Программой отводится на изучение физики 242 часа, которые распределены по классам следующим образом:

7 класс -70 часов, 2 часа в неделю;

8 класс -70 часов, 2 часа в неделю;

9 класс – 102 часа, 3 часа в неделю.

2. Планируемые результаты

Механические явления

- Выпускник научится:
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда,

период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

• Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

• Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
 - описывать изученные свойства тел и тепловые явления, используя физические

величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

• Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления

• Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.

- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления припоследовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

• Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

• Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно

трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

• Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

• Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира;

• Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;

различать гипотезы о происхождении Солнечной системы.

3. Содержание учебного предмета

7 класс

ФИЗИКА И ФИЗИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ ПРИРОДЫ

Физика — наука о природе. Физические тела и явления. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины и их измерение. Точность и погрешность измерений. Международная система единиц.

Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественнонаучной грамотности.

Лабораторная работа

• Определение цены деления шкалы измерительного прибора.

ТЕПЛОВЫЕ ЯВЛЕНИЯ. Первоначальные сведения о строении вещества.

Строение вещества. Опыты, доказывающие атомное строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Диффузия в газах, жидкостях и твердых телах. Броуновское движение. Взаимодействие (притяжение и отталкивание) молекул. Агрегатные состояния вещества. Различие в строении твердых тел, жидкостей и газов. Свойства газов, жидкостей и твердых тел.

Лабораторная работа.

• Измерение размеров малых тел.

МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ.

Взаимолействие тел.

Механическое движение. Равномерное И не равномерное движение. Относительность механического движения. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, скорость, время движения). Скорость. Расчет пути и времени движения. Траектория. Равномерное прямолинейное движение. Взаимодействие тел. Инерция. Масса. Плотность вещества. Измерение массы тела на весах. Расчет массы и объема по его плотности. Сила. Единицы силы. Силы тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трение. Трение скольжения. Трение покоя. Трение в природе и технике. Физическая природа небесных тел Солнечной системы.

Лабораторные работы

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Измерение плотности вещества твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Исследование зависимости силы трения скольжения от площади соприкосновения тел и прижимающей силы.

Давление твердых тел, жидкостей и газов.

Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Манометры. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.

Лабораторные работы

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Изучение условий плавания тел

Работа и мощность. Энергия.

Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии. Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («Золотое правило механики»). Коэффициент полезного действия механизма.

Лабораторные работы

- 10. Выяснение условий равновесия рычага.
- 11. Измерение КПД наклонной плоскости.

ПОВТОРЕНИЕ

8 класс

ТЕПЛОВЫЕ ЯВЛЕНИЯ

Тепловое движение. Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.

Лабораторная работа.

- 1. Изучение явления теплообмена при смешивании холодной и горячей воды.
- 2. Измерение удельной теплоемкости вещества.
- 3. Измерение влажности воздуха.

ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ

Электрические явления.

Электризация физических тел. Элементарный электрический заряд. Взаимодействие заряженных тел. Два вида электрического заряда. Делимость электрического заряда. Электрон. Закон сохранения электрического заряда. Электрическое поле как особый вид материи. Проводники, полупроводники и изоляторы электричества. электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора. Электрический ток. Источники электрического тока. Направление и действия электрического тока. Носители электрических зарядов в металлах. Электрическая цепь и ее составные части. Сила тока. Единицы силы тока. Амперметр. Измерение силы тока. Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения. Электрическое сопротивление проводников. Единицы сопротивления. Закон Ома для участка цепи. Расчет сопротивления проводников. Удельное Реостаты.Последовательное соединение проводников. соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Единицы работы электрического тока, применяемые на практике. Счетчик электрической энергии. Расчет электроэнергии, потребляемой бытовыми приборами. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание. Правила безопасности при работе с источниками электрического тока

Лабораторная работа.

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение электрического напряжения.
- 6. Регулирование силы тока реостатом.
- 7. Измерение электрического сопротивления проводника.
- 8. Измерение работы и мощности тока.

Магнитные явления.

Опыт Эрстеда. Магнитное поле. Постоянные магниты. Взаимодействие магнитов. Магнитное поле тока. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током. Применение электромагнитов. Действие магнитного поля на проводник с током. Сила Ампера. Электродвигатель.

Лабораторная работа.

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение принципа действия электродвигателя.

Световые явления.

Элементы геометрической оптики. Источники света. Закон прямолинейного

распространения света. Луч. Отражение и преломление света. Закон отражения света. Закон преломления. Плоское зеркало. Линзы. Изображение предмета в зеркале и линзе. Фокусное расстояние и оптическая сила линзы. Оптические приборы. Глаз как оптическая система.

Лабораторная работа.

11. Получение изображений с помощью собирающей линзы.

КВАНТОВЫЕ ЯВЛЕНИЯ.

Строение атомов. Планетарная модель атома. Состав атомного ядра. Протон, нейтрон и электрон.

Повторение и систематизация изученного в 8 классе

9 класс

МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ

Законы взаимодействия и движения тел.

Механическое движение. Материальная точка как модель физического тела. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Траектория. Путь. Определение координаты движущегося тела. Равномерное и Скорость. равноускоренное прямолинейное движение. Перемещение при прямолинейном равномерном движении. Графическое представление движения. Ускорение. График скорости. Перемещение при прямолинейном равноускоренном движении. Равномерное движение по окружности. Относительность механического движения. Инерциальные системы отсчета. Первый закон Ньютона и инерция. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Закон всемирного тяготения. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике. Свободное падение тел. Движение тела, брошенного вертикально вверх.. Прямолинейное и криволинейное движение. Импульс. Закон сохранения импульса. Реактивное движение. Период и частота обращения. Искусственные спутники Земли. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Лабораторная работа

- Исследование равноускоренного движения без начальной скорости.
- Измерение ускорения свободного падения

Механические колебания и волны. Звук.

Механические колебания. Свободные колебания. Величины, характеризующие колебательное движение. Период, частота и амплитуда колебаний.Период колебаний математического и пружинного маятников. Превращение энергии при колебательном движении. Резонанс. Распространение колебаний в упругой среде. Механические волны в однородных средах. Длина волны. Продольные и поперечные волны. Скорость распространения волны. Волны в среде. Звук как механическая волна. Громкость и высота тона звука. Распространение звука. Скорость звука. Отражение звука. Эхо.

Лабораторная работа

• Исследование зависимости периода и частоты свободных колебаний математического маятника от длины его нити.

ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ

Электромагнитное поле

Опыт Эрстеда. Магнитное поле тока. Графическое изображение магнитного поля. Действие магнитного поля на проводник с током. Индукция магнитного поля. Сила Ампера и сила Лоренца. Магнитный поток. Явление электромагнитной индукции. Опыты Фарадея. Правило Ленца. Самоиндукция. Электрогенератор.Переменной ток. Трансформатор. Передача электрической энергии на расстояние.Конденсатор. Энергия электрического поля конденсатора. Электрический ток. Колебательный контур. Электромагнитные колебания. Электромагнитные волны и их свойства.Скорость света. Закон преломления света. Принципы радиосвязи и

телевидения. Влияние электромагнитных излучений на живые организмы. Свет – электромагнитная волна. Дисперсия света. Интерференция и дифракция света.

Лабораторная работа

- Изучение явления электромагнитной индукции.
- Наблюдение сплошного и линейчатых спектров испускания.

КВАНТОВЫЕ ЯВЛЕНИЯ

Строение атома и атомного ядра, использование энергии атомных ядер

Радиоактивность. Альфа- излучение. Бета- излучение. Гамма-излучение. Период полураспада. Методы регистрации ядерных излучений. Опыты Резерфорда. Строение атома. Планетарная модель атома. Состав атомного ядра. Протон, нейтрон и электрон. Зарядовое и массовое числа. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Ядерные силы. Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

Лабораторная работа

- Измерение естественного радиационного фона дозиметром.
- Изучение деления ядра атома урана по фотографии треков.
- Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
- Изучение треков заряженных частиц по готовым фотографиям.

СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ.

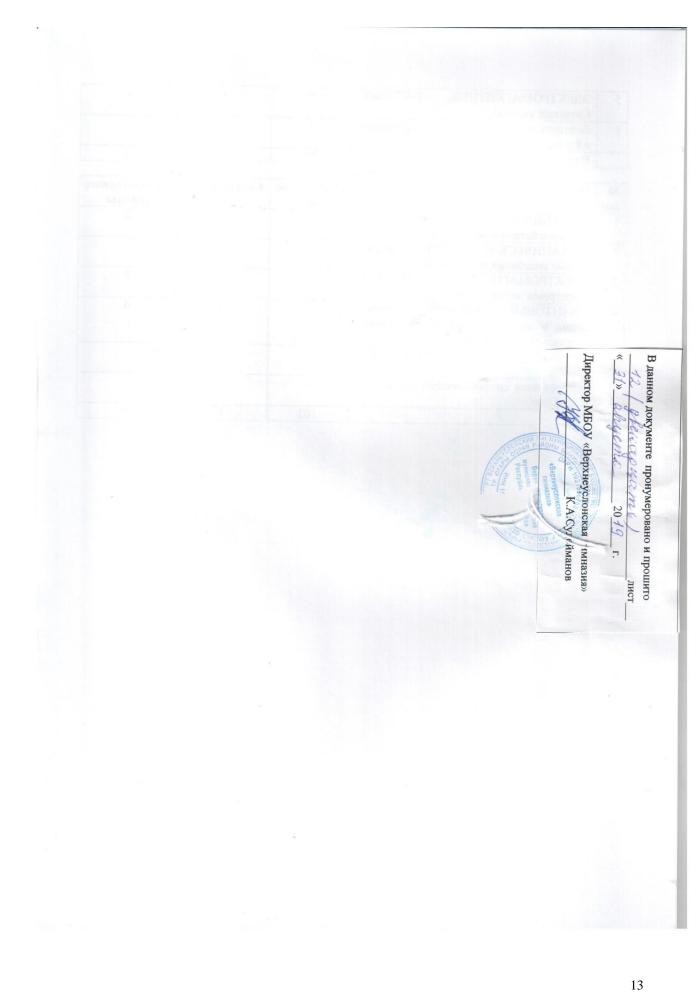
Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

Повторение и систематизация изученного в 9 классе

4. Тематическое планирование

7 класс

№	Наименование разделов и тем	Количество	Контрольные	Лабораторные
		часов	работы	работы
1	ФИЗИКА И ФИЗИЧЕСКИЕ	4		1
	МЕТОДЫ ИЗУЧЕНИЯ ПРИРОДЫ.			
2	ТЕПЛОВЫЕ ЯВЛЕНИЯ.	6	1	1
	Первоначальные сведения о строении			
	вещества.			
3	МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ	54	5	9
3.1	Взаимодействие тел.	21	2	5
3.2	Давление твердых тел, жидкостей и	21	2	2
	газов.			
3.3	Работа и мощность. Энергия.	12	1	2
4	ПОВТОРЕНИЕ КУРСА	6	1	
	Итого:	70	7	11


8 класс

№	Наименование разделов и т	ем	Количество	Контрольные	Лабораторные
п/п			часов	работы	работы
1	ТЕПЛОВЫЕ ЯВЛЕНИЯ		25	2	3
2	ЭЛЕКТРОМАГНИТНЫЕ	явления.	24	2	5
	Электрические явления.				
3	КВАНТОВЫЕ ЯВЛЕНИЯ		1	-	-
4	ЭЛЕКТРОМАГНИТНЫЕ	явления.	7	1	2
	Магнитные явления.				

5	ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ.	9	1	1
	Световые явления.			
6	Повторение и систематизация изученного	4	1	
	в 8 классе			
	Итого:	70	7	11

9 класс

№	Наименование разделов и тем	Количество	Контрольные	Лабораторные
п/п		часов	работы	работы
1	МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ. Законы	34	2	2
	взаимодействия и движения тел.			
2	МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ.	16	1	1
	Механические колебания и волны. Звук.			
3	ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ.	24	1	2
	Электромагнитное поле.			
4	КВАНТОВЫЕ ЯВЛЕНИЯ. Строение	17	1	4
	атома и атомного ядра. Использование			
	энергии атомных ядер.			
5	СТРОЕНИЕ И ЭВОЛЮЦИЯ	5		
	ВСЕЛЕННОЙ			
6	Повторениеи систематизация изученного	6	1	
	в 9 классе			
	Итого:	102	6	9

