Максимальное количество баллов за олимпиаду — 56

Задание 1. Вариант **1.** Дети играют в игру. За один ход можно стереть последнюю цифру числа или записать вместо него вдвое большее число. Запишите последовательность из четырёх ходов, которая позволит из 49 получить 32.

Ответ: 49 -> 4 -> 8 -> 16 -> 32.

Решение.

Из числа 49, стирая последнюю цифру, получаем 4. Далее, умножаем на 2 трижды, последовательно получая 8, 16, 32.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 1. Вариант 2. Дети играют в игру. За один ход можно стереть последнюю цифру числа или записать вместо него вдвое большее число. Запишите последовательность из четырёх ходов, которая позволит из 56 получить 40.

Ответ: 56 -> 5 -> 10 -> 20 -> 40.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 1. Вариант 3. Дети играют в игру. За один ход можно стереть последнюю цифру числа или записать вместо него вдвое большее число. Запишите последовательность из четырёх ходов, которая позволит из 66 получить 48.

Ответ: 66 -> 6 -> 12 -> 24 -> 48.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 1. Вариант 4. Дети играют в игру. За один ход можно стереть последнюю цифру числа или записать вместо него вдвое большее число. Запишите последовательность из четырёх ходов, которая позволит из 76 получить 56.

Ответ: 76 -> 7 -> 14 -> 28 -> 56.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 2. Вариант 1. По кольцевому маршруту №21С ездят 4 автобуса с одинаковой скоростью, причём интервал движения составляет 20 минут, т. е. в любое место на маршруте каждый следующий автобус прибывает через 20 минут после предыдущего. Со следующей недели на маршрут добавят ещё один автобус, который будет двигаться с той же скоростью, и меняют расписание так, чтобы и теперь промежуток времени между автобусами был постоянный. Какой интервал движения будет на следующей неделе? Ответ выразите в минутах.

Ответ: 16. Решение.

Рассмотрим какой-либо автобус. Заметим, что в одну и ту же точку он прибывает через $20 \cdot 4 = 80$ минут. С появлением пятого автобуса промежуток в 80 минут разобьётся на 5 частей, поэтому интервал движения будет равен 80/5 = 16 минут.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 2. Вариант 2. По кольцевому маршруту №21С ездят 4 автобуса с одинаковой скоростью, причём интервал движения составляет 30 минут, т. е. в любое место на маршруте каждый следующий автобус прибывает через 30 минут после предыдущего. Со следующей недели на маршрут добавят ещё один автобус, который будет двигаться с той же скоростью, и меняют расписание так, чтобы и теперь промежуток времени между автобусами был постоянный. Какой интервал движения будет на следующей неделе? Ответ выразите в минутах.

Ответ: 24.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 2. Вариант 3. По кольцевому маршруту №21С ездят 5 автобусов с одинаковой скоростью, причём интервал движения составляет 24 минут, т. е. в любое место на маршруте каждый следующий автобус прибывает через 24 минуты после предыдущего. Со следующей недели на маршрут добавят ещё один автобус, который будет двигаться с той же скоростью, и меняют расписание так, чтобы и теперь промежуток времени между автобусами был постоянный. Какой интервал движения будет на следующей неделе? Ответ выразите в минутах.

Ответ: 20.

Критерий оценивания: точное совпадение ответа -7 баллов

Задание 2. Вариант 4. По кольцевому маршруту №21С ездят 5 автобусов с одинаковой скоростью, причём интервал движения составляет 30 минут, т. е. в любое место на маршруте каждый следующий автобус прибывает через 30 минут после предыдущего. Со следующей недели на маршрут добавят ещё один автобус, который будет двигаться с той же скоростью, и меняют расписание так, чтобы и теперь промежуток времени между автобусами был постоянный. Какой интервал движения будет на следующей неделе? Ответ выразите в минутах.

Ответ: 25.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 3. Вариант 1. В каждой клетке таблицы 3×3 стоят нули. Над таблицей можно проводить следующие операции:

- прибавить 1 к каждому из чисел, написанных в ячейках любой строки,
- прибавить 2 к каждому из чисел, написанных в ячейках любого столбца.

В некотором порядке a раз провели первую операцию и b раз – вторую. Получили следующую таблицу.

7	1	5
9	3	7
8	2	6

Найдите а.

Ответ: 6

Найдите b.

Ответ: 5

Решение.

Заметим, что не проводилась операция со вторым столбцом таблицы, иначе бы в верхней клетке второго столбца была бы хотя бы двойка. Тогда, клетки второго столбца изменялись лишь при операциях со строками, причём с верхней, средней и нижней строками провели 1, 3 и 2 операции соответственно. Операция с первой строкой увеличила левую верхнюю и правую верхнюю клетки таблицы на 1, поэтому с первым столбцом провели $\frac{7-1}{2}=3$ операции, а с $\frac{5-1}{2}=3$ операции.

третьим — $\frac{5-1}{2}=2$ операции. Итого, $a=1+3+2=6,\,b=3+0+2=5.$

Критерий оценивания:

ответ на первый пункт $\,-\,3\,$ балла

ответ на второй пункт — 4 балла

Задание 3. Вариант **2.** В каждой клетке таблицы 3×3 стоят нули. Над таблицей можно проводить следующие операции:

- прибавить 1 к каждому из чисел, написанных в ячейках любой строки,
- прибавить 2 к каждому из чисел, написанных в ячейках любого столбца.

В некотором порядке a раз провели первую операцию и b раз – вторую. Получили следующую таблицу.

11	1	5
13	3	7
15	5	9

Найдите а.

Ответ: 9

Найдите b.

Ответ: 7

Критерий оценивания:

ответ на первый пункт $\,-\,3\,$ балла

ответ на второй пункт -4 балла

Задание 3. Вариант **3.** В каждой клетке таблицы 3×3 стоят нули. Над таблицей можно проводить следующие операции:

- $\bullet\,$ прибавить 1 к каждому из чисел, написанных в ячейках любой строки,
- прибавить 2 к каждому из чисел, написанных в ячейках любого столбца.

В некотором порядке a раз провели первую операцию и b раз – вторую. Получили следующую таблицу.

	9	1	11
	12	4	14
ĺ	13	5	15

Найдите а.

Ответ: 10

Найдите b.

Ответ: 9

Критерий оценивания:

ответ на первый пункт $\,-\,3\,$ балла

ответ на второй пункт — 4 балла

Задание 3. Вариант 4. В каждой клетке таблицы 3 × 3 стоят нули. Над таблицей можно проводить следующие операции:

- прибавить 1 к каждому из чисел, написанных в ячейках любой строки,
- прибавить 2 к каждому из чисел, написанных в ячейках любого столбца.

В некотором порядке a раз провели первую операцию и b раз – вторую. Получили следующую таблицу.

9 1 5 11 3 7 12 4 8

Найдите *a*. **Ответ:** 8 Найдите *b*. **Ответ:** 6

Критерий оценивания:

ответ на первый пункт -3 балла ответ на второй пункт -4 балла

Задание 4. Вариант 1. На столе лежат 10 монет достоинством 5 и 10 рублей. Семь детей взяли монеты, и ни одной не осталось. Каждый брал одну монету или две, но разного достоинства. У Антона оказалось меньше рублей, чем у каждого из остальных детей. Какая сумма денег лежала на столе? Ответ выразите в рублях.

Ответ: 80 Решение.

Если бы каждый брал по одной монете, то осталось бы три монеты, поэтому трое взяли по две монеты, а оставшиеся четверо — по одной. Ясно, что любой взявший две монеты получил больше рублей, чем любой взявший одну монету, поэтому Антон взял одну монету и эта монета 5 рублей. Тогда, трое, кроме Антона, взявшие по одной монете — взяли по 10 рублей. А трое, взявшие по 2 монеты разного достоинства взяли по 5+10=15 рублей. Итого, на столе лежало $5+3\cdot 10+3\cdot 15=80$ рублей.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 4. Вариант 2. На столе лежат 11 монет достоинством 5 и 10 рублей. Семь детей взяли монеты, и ни одной не осталось. Каждый брал одну монету или две, но разного достоинства. У Антона оказалось меньше рублей, чем у каждого из остальных детей. Какая сумма денег лежала на столе? Ответ выразите в рублях.

Ответ: 85

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 4. Вариант 3. На столе лежат 11 монет достоинством 5 и 10 рублей. Восемь детей взяли монеты, и ни одной не осталось. Каждый брал одну монету или две, но разного достоинства. У Антона оказалось меньше рублей, чем у каждого из остальных детей. Какая сумма денег лежала на столе? Ответ выразите в рублях.

Ответ: 90


Критерий оценивания: точное совпадение ответа — 7 баллов

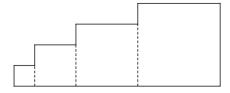
Задание 4. Вариант 4. На столе лежат 12 монет достоинством 5 и 10 рублей. Восемь детей взяли монеты, и ни одной не осталось. Каждый брал одну монету или две, но разного достоинства. У Антона оказалось меньше рублей, чем у каждого из остальных детей. Какая сумма денег лежала на столе? Ответ выразите в рублях.

Ответ: 95

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 5. Вариант 1. Даны 20 квадратов со сторонами 1, 2, ..., 20. Они выстроены вдоль одной прямой в виде лестницы. На рисунке показаны первые четыре квадрата этой лестницы.

Найдите периметр получившейся фигуры.

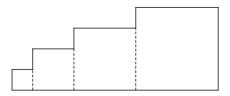

Ответ: 460

Решение.

Периметр фигуры состоит из 4 границ: правая, нижняя, левая и верхняя. Правая граница имеет длину 20. Нижняя — $1+2+\cdots+20=\frac{20\cdot 21}{2}=210$. Левая граница состоит из 20 отрезков длины 1 каждый, и её длина равна 20. Верхняя граница состоит из 20 отрезков длинами 1, 2, \cdots , 20 и её длина равна $1+2+\cdots+20=210$. Тогда, периметр фигуры равен 20+210+20+210=460.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 5. Вариант 2. Даны 19 квадратов со сторонами 1, 2, ..., 19. Они выстроены вдоль одной прямой в виде лестницы. На рисунке показаны первые четыре квадрата этой лестницы.

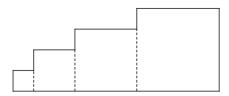


Найдите периметр получившейся фигуры.

Ответ: 418

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 5. Вариант 3. Даны 30 квадратов со сторонами 1, 2, ..., 30. Они выстроены вдоль одной прямой в виде лестницы. На рисунке показаны первые четыре квадрата этой лестницы.



Найдите периметр получившейся фигуры.

Ответ: 990

Критерий оценивания: точное совпадение ответа -7 баллов

Задание 5. Вариант 4. Даны 29 квадратов со сторонами 1, 2, ..., 29. Они выстроены вдоль одной прямой в виде лестницы. На рисунке показаны первые четыре квадрата этой лестницы.

Найдите периметр получившейся фигуры.

Ответ: 928

Критерий оценивания: точное совпадение ответа -7 баллов

Задание 6. Вариант 1. Аня, Валя и Оля после уроков вспоминали, как они провели лето. Однажды, в июне, в торговом центре они встретили промоутера, который раздавал бумажные цветы. В этот момент у него осталось пять цветков, показанных на рисунке.

Каждой девочке он дал по одному цветку.

Валя сказала: «Я помню, какого цвета цветок я получила, но не помню, какой формы».

Чуть позже она добавила: «Я также помню, какого цвета цветок получила Оля, но не помню, какой формы».

Аня сказала: «А я помню, какой формы цветок я получила, но не помню, какого цвета».

После этого Валя поняла, какой цветок получила Аня. Какой?

Ответ: Оранжевый трилистник.

Какого цвета цветы получили Валя и Оля?

Ответ: Обе фиолетовые.

Решение.

Среди цветов есть только два одинаковой формы— это трилистники, поэтому Аня получила трилистник. Если Валя или Оля или обе получили оранжевый цветок, то могло оказаться, что Валя и Оля получили не трилистники,

тогда Аня могла получить как оранжевый, так и фиолетовый трилистник. Это противоречит тому, что Валя поняла, какой цветок получила Аня.

Значит, Валя и Оля получили фиолетовые цветы. Это возможно лишь когда одна из них получила фиолетовый трилистник, а другая — фиолетовый шестилистник. Тогда, Аня получила оранжевый трилистник.

Критерий оценивания:

ответ на первый пункт -3 балла ответ на второй пункт -3 балла ответ на оба пункта -7 баллов

Задание 6. Вариант 2. Аня, Валя и Оля после уроков вспоминали, как они провели лето. Однажды, в июне, в торговом центре они встретили промоутера, который раздавал бумажные цветы. В этот момент у него осталось пять цветков, показанных на рисунке.

Каждой девочке он дал по одному цветку.

Валя сказала: «Я помню, какого цвета цветок я получила, но не помню, какой формы».

Чуть позже она добавила: «Я также помню, какого цвета цветок получила Оля, но не помню, какой формы».

Аня сказала: «А я помню, какой формы цветок я получила, но не помню, какого цвета».

После этого Валя поняла, какой цветок получила Аня. Какой?

Ответ: Фиолетовый 4-листник.

Какого цвета цветы получат Валя и Оля?

Ответ: Обе оранжевые. **Критерий оценивания:**

ответ на первый пункт -3 балла ответ на второй пункт -3 балла ответ на оба пункта -7 баллов

Задание 6. Вариант 3. Аня, Валя и Оля после уроков вспоминали, как они провели лето. Однажды, в июне, в торговом центре они встретили промоутера, который раздавал бумажные цветы. В этот момент у него осталось пять цветков, показанных на рисунке.

Каждой девочке он дал по одному цветку.

Валя сказала: «Я помню, какого цвета цветок я получила, но не помню, какой формы».

Чуть позже она добавила: «Я также помню, какого цвета цветок получила Оля, но не помню, какой формы».

Аня сказала: «А я помню, какой формы цветок я получила, но не помню, какого цвета».

После этого Валя поняла, какой цветок получила Аня. Какой?

Ответ: Фиолетовый 5-листник.

Какого цвета цветы получат Валя и Оля?

Ответ: Обе розовые.

Критерий оценивания:

ответ на первый пункт -3 балла ответ на второй пункт -3 балла ответ на оба пункта -7 баллов

Задание 6. Вариант 4. Аня, Валя и Оля после уроков вспоминали, как они провели лето. Однажды, в июне, в торговом центре они встретили промоутера, который раздавал бумажные цветы. В этот момент у него осталось пять цветков, показанных на рисунке.

Каждой девочке он дал по одному цветку.

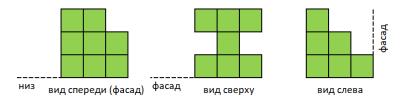
Валя сказала: «Я помню, какого цвета цветок я получила, но не помню, какой формы».

Чуть позже она добавила: «Я также помню, какого цвета цветок получила Оля, но не помню, какой формы».

Аня сказала: «А я помню, какой формы цветок я получила, но не помню, какого цвета».

После этого Валя поняла, какой цветок получила Аня. Какой?

Ответ: Красный 6-листник.

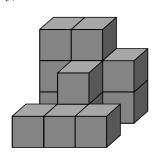

Какого цвета цветы получат Валя и Оля?

Ответ: Обе зелёные.

Критерий оценивания:

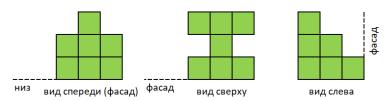
ответ на первый пункт -3 балла ответ на второй пункт -3 балла ответ на оба пункта -7 баллов

Задание 7. Вариант 1. Из одинаковых кубиков сложили конструкцию. На рисунке представлен её вид спереди, сверху и слева.



Из скольких кубиков состоит конструкция?

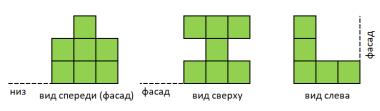
Ответ: 13. Решение.


Будем называть передние кубики — фасадом, задние — тылом, а остальные — средней осью.

Из вида слева видно, что весь фасад высотой не более 1, а из вида сверху — не менее единицы. Следовательно, все столбики фасада высотой 1. Из видов сверху и слева понятно, что левый и правый столбики средней оси имеют высоту 0, а центральный столбик — высоту 2. Из вида спереди понятно, что левый и центральный столбики тыла имеют высоту 3, а правый — высоту 2. Поэтому, всего 1 + 1 + 1 + 2 + 3 + 3 + 2 = 13 кубиков.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 7. Вариант 2. Из одинаковых кубиков сложили конструкцию. На рисунке представлен её вид спереди, сверху и слева.

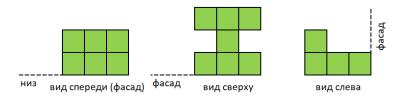


Из скольких кубиков состоит конструкция?

Ответ: 12.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 7. Вариант 3. Из одинаковых кубиков сложили конструкцию. На рисунке представлен её вид спереди, сверху и слева.



Из скольких кубиков состоит конструкция?

Ответ: 11.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 7. Вариант 4. Из одинаковых кубиков сложили конструкцию. На рисунке представлен её вид спереди, сверху и слева.

Из скольких кубиков состоит конструкция?

Ответ: 10.

Критерий оценивания: точное совпадение ответа — 7 баллов

Задание 8. Вариант 1. 60 камней разложили на 5 кучек так, что во всех кучках оказалось разное число камней. В кучке Ромы оказалось больше всего камней.

Какое наибольшее число камней может быть в кучке Ромы?

Ответ: 50.

Какое наименьшее число камней может быть в кучке Ромы?

Ответ: 14. Решение.

Наименьшее число камней в кучках, не принадлежащих Роме, равно 1 + 2 + 3 + 4 = 10. Поэтому у Ромы не более 60 - 10 = 50 камней. Такое может быть, например, у Ромы 50 камней, а в четырёх других кучках 1, 2, 3 и 4 камня.

Если у Ромы не более 13 камней, то всего не более, чем 13+12+11+10+9 = 55 камней. Противоречие. Следовательно, у Ромы хотя бы 14 камней. Такое может быть когда, например, в кучках 14, 13, 12, 11 и 10 камней.

Критерий оценивания:

ответ на первый пункт -2 балла ответ на второй пункт -5 баллов

Задание 8. Вариант 2. 70 камней разложили на 5 кучек так, что во всех кучках оказалось разное число камней. В кучке Ромы оказалось больше всего камней.

Какое наибольшее число камней может быть в кучке Ромы?

Ответ: 60.

Какое наименьшее число камней может быть в кучке Ромы?

Ответ: 16.

Критерий оценивания:

ответ на первый пункт -2 балла ответ на второй пункт -5 баллов

Задание 8. Вариант 3. 80 камней разложили на 5 кучек так, что во всех кучках оказалось разное число камней. В кучке Ромы оказалось больше всего камней.

Какое наибольшее число камней может быть в кучке Ромы?

Ответ: 70.

Какое наименьшее число камней может быть в кучке Ромы?

Ответ: 18.

Критерий оценивания:

ответ на первый пункт -2 балла ответ на второй пункт -5 баллов

Задание 8. Вариант 4. 90 камней разложили на 5 кучек так, что во всех кучках оказалось разное число камней. В кучке Ромы оказалось больше всего камней.

Какое наибольшее число камней может быть в кучке Ромы?

Ответ: 80.

Какое наименьшее число камней может быть в кучке Ромы?

Ответ: 20.

Критерий оценивания:

ответ на первый пункт $\,-\,2\,$ балла ответ на второй пункт $\,-\,5\,$ баллов

Сириус.Курсы — для тех, кто хочет знать больше!

