

ДИАГНОСТИЧЕСКИЕ РАБОТЫ ДЛЯ ИЗМЕРЕНИЯ МАТЕМАТИЧЕСКОЙ ГРАМОТНОСТИ ШКОЛЬНИКОВ V-VI КЛАССОВ В КОНТЕКСТЕ МЕЖДУНАРОДНЫХ ИССЛЕДОВАНИЙ PISA

МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ УЧИТЕЛЯ

Печатается по решению Методического совета Центра непрерывного повышения профессионального мастерства педагогических работников КФУ

Научный руководитель:

Р.Ф.Шайхелисламов – директор Центра непрерывного повышения профессионального мастерства педагогических работников Республики Татарстан Института психологии и образования КФУ, профессор, доктор экономических наук

Автор-разработчик:

Кадырова Ф.З., тьютор Центра непрерывного повышения профессионального мастерства педагогических работников Республики Татарстан Института психологии и образования КФУ, к.п.н, федеральный эксперт мониторинга и оценки функциональной грамотности школьников по направлению «Математическая грамотность»

В пособии представлены тексты и методики оценки задач, формирующие функциональной математической грамотности школьников, отражающие социальные и личностные, досуговые и образовательные, коммуникативные проблемы учащихся разных образовательных уровней. Задачи представлены в форме типичных ситуаций, с которыми могут столкнуться школьники в повседневной жизнедеятельности.

Содержание пособия согласовано с требованиями нового поколения Федеральных образовательных стандартов к оценке метапредметных образовательных результатов.

Введение

С 2000 года с периодичностью раз в три года проводится тестирование PISA (Programme for International Student Assessment), которое проверяет читательскую, естественно-научную и математическую компетентность 15-летних школьников. Программа по оценке образовательных достижений учащихся PISA осуществляется Организацией экономического сотрудничества и развития ОЭСР (ОЕСD — Organization for Economic Cooperation and Development).

По результатам международного мониторинга качества школьного образования, проведенного в 2018 году, Россия (с 488 баллами) занимает 30-е место по математической грамотности из 78 стран-участников, уступая лидеру Китаю 103 балла, Сингапуру - 81 балл. Уровень математической компетентности российских школьников практически не отличается от средней успешности учащихся стран ОЭСР - 489 баллов, но все же современное математическое образование требует изменений.

Математическая грамотность, в определении PISA, — «это способность человека определять и понимать роль математики в мире, в котором он живет, высказывать хорошо обоснованные математические суждения и использовать математику так, чтобы удовлетворять в настоящем и будущем потребности, присущие созидательному, заинтересованному и мыслящему гражданину» [2]. Международный тест PISA выявляет не уровень академических знаний, а сформированность умений, составляющих основу успешности выпускника школы в жизни и будущей профессиональной карьере. Формат заданий максимально приближен к жизненным ситуациям. Задания представлены не только в виде текстов, но включают таблицы, диаграммы, графики, карты, чертежи, рекламные буклеты, инструкции, газетные статьи, объявления, информационные карты и т.д. Для поиска решения задачи необходимо осмыслить текст, соотнести с информацией, представленной в знаковой и символической форме, проанализировать, выделить условия в соответствии с требованием задачи.

Первая проблема российских школьников связана с содержанием заданий и тем, что в ходе школьного обучения текстовые задачи являются высоко типизированными, с однообразным сюжетом, с двумя-тремя форматами вопроса. Подготовка к ОГЭ и ЕГЭ усиливает этот «провал»: школьные учителя готовят выпускников к решению задач и их аналогов, входящих в варианты государственного экзамена. В школьных учебниках отсутствуют «PISA-подобные» задачи, задания на интерпретацию математической теории в практической деятельности человека. Часть тем математики («Степени», «Прогрессии»), не содержащая достаточного количества задач практического содержания, оказывается неактуальной к концу освоения курса основной школы.

Вторая проблема, следствием которой является первая, - это непонимание универсальности математики и математической культуры школьниками. Инструментом математической культуры выпускника является математическое моделирование, или перевод информации с языка контекста на символический язык и наоборот. Пять этапов моделирования: понимание, структурирование, моделирование, вычисление, интерпретация, - в российском образовании существуют разрозненно, не составляют логику решения любой задачи для современного школьника. Ярким примером построения динамической модели с тремя составляющими является задание «Вращающаяся дверь» (2015г.), с которой справились 3% школьников, участвующих в тестировании.

Выходом из сложившейся ситуации может быть введение контекстности в содержание математических задач, что означает формулировку заданий таким образом, чтобы школьнику всякий раз приходилось переносить знания, приобретенные в классе, в новые контексты. Для этого нужна разработка и модификация заданий, учитывающих современные достижения науки, техники, явления в социальной экономической жизни общества.

Современному учителю необходимо осознать, что введение в учебный процесс задания в формате тестов PISA, позволяют решить одновременно несколько задач: применять математические знания при решении практических заданий, оценивать уровень развития читательской компетенции учащихся, т. е. насколько ученик в состоянии разобраться в тексте и извлечь из него необходимую информацию; измерять уровень развития предметных компетенций; оценивать способность самостоятельно приобретать знания и выбирать способы деятельности, необходимые для успешной адаптации в современном мире, т. e. результативно действовать нестандартных формировать познавательный интерес к предмету через развитие ситуациях; исследовательской компетенции и др.

Методический навигатор

Методический навигатор представляет собой перечень ответов на вопросы, которые позволят эффективно использовать его в управленческой и педагогической деятельности.

? С какой целью подготовлено пособие?

Одной из задач Национального проекта «Образование» — это обеспечение глобальной конкурентоспособности российского образования и вхождение Российской Федерации в число 10 ведущих стран мира по качеству общего образования.

Перед учительским сообществом поставлена сложнейшая задача по формированию и развитию функциональной грамотности школьников. Пособие может являться неким инструментом и помощником учителя при решении этих задач.

? Какие материалы представлены в пособии?

В пособии представлены *инновационные продукты* – *практико-ориентированные задачи* для учащихся различных возрастных категорий (учащихся 5-11-х классов). В создании принимали участие учителя различных общеобразовательных учреждений республики.

Сюжеты задач предложены учителями математики — членами «Лаборатории современного урока в контексте ФГОС ООО», а так же учителями математики Республики Татарстан.

2 Какие знания и умения оценивают задачи практической направленности, представленные в пособии, каким образом?

Федеральный стандарт общего образования нового поколения ориентирует школу на комплексное развитие образовательного опыта учащихся, руководство не только учебной, но и внеучебной деятельностью, самообразованием.

Перед учителем ставится задача не только научить школьников решению примеров и задач, а умению применять полученные знания в практической повседневной жизнедеятельности. Для этого необходимо формирование и развитие функциональной математической грамотности у учащихся.

При выполнении предложенных задач можно оценить как отдельные функциональные умения, так и ключевые навыки и компетенции.

? Как использовать задачи, представленные в пособии?

Задачи можно использовать как в урочное, так и внеурочное время. Методика и критерии оценивания задач строятся аналогично, как в исследованиях PISA.

Практически все задачи пособия, предполагают как индивидуальную, так и выработку коллективного проектного решения, создания учебного продукта (памятки, инструкции др.), что позволить развитию и регулятивных и коммуникативных и познавательных учебных универсальных действий.

ПОДЪЁМ НА ГОРУ ФУДЗИ

Гора Фудзи – знаменитый бездействующий вулкан в Японии.

Вопрос:

Гора Фудзи ежегодно открыта для подъёма людей только с 1 июля по 27 августа включительно. В течение этого времени на гору Фудзи поднимаются около 200 000 людей.

Сколько примерно в среднем людей поднимаются на гору Фудзи каждый день?

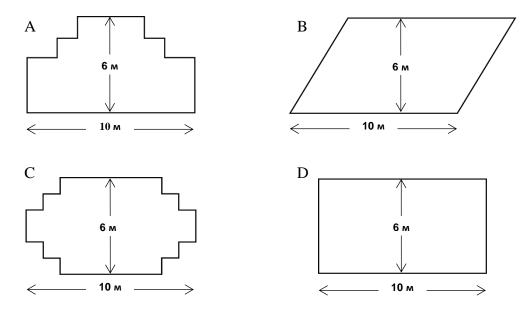
- А 340 10% (вычислительная ошибка при делении)
- B 710
- C 3400
- D 7100
- E 7400

ОЦЕНКА ОТВЕТА НА ВОПРОС

Ответ принимается полностью

Кол 1: С. 3400

Ключевым моментом решения является правильное определение количества дней, которые открыты для подъёма на гору.


Содержательной область - «Количество» (несложная арифметическая задача)

Когнитивная область - «Формулировать» (из-за отсутствия необходимой информации приходится создать модель решения)

Контекст - «Общественный» (ситуация связана с жизнью общества)

САДОВНИК

У садовника есть 32 м провода, которым он хочет обозначить на земле границу клумбы. Форму клумбы ему надо выбрать из следующих вариантов.

Обведите в таблице слово «Да» или «Нет» около каждой формы клумбы в зависимости от того, хватит или не хватит садовнику 32 м провода, чтобы обозначить её границу.

План клумбы	Хватит ли 32 м провода, чтобы обозначить границу клумбы?
План А	Да / Нет
План В	Да / Нет
План С	Да / Нет
План D	Да / Нет

ОЦЕНКА ОТВЕТА НА ВОПРОС

Ответ принимается полностью

Код 2: Даны все четыре верных ответа: Да, Нет, Да, Да

Ответ принимается частично

Код 1: Даны три любых верных ответа.

Ответ не принимается

Код 0: Два или меньше верных ответа.

Возможные рассуждения: Если выпрямить стороны многоугольников (формы A и C), то получим прямоугольники со сторонами 10 м и 6 м. Тогда периметры клумбы на планах A, C, D равны ровно 32 м. Для определения длины боковой стороны параллелограмма (форма В) возможно такое рассуждение: на рисунке явно видно, что боковые стороны

(наклонные) параллелограмма (форма В) по длине больше его высоты, равной 6 м. Значит, периметр клумбы формы В более 32 м.

Содержательной область - «Пространство и форма» (знание свойств параллелограмма и понятия периметра, преобразование в прямоугольники форм A и C)

Когнитивная область - «Применять

Контекст - «Профессиональный»

Приведем пример на когнитивную область «Интерпретировать».

Этот процесс охватывает и интерпретацию, и оценку полученного решения или определение того, что результаты разумны и имеют смысл в рамках предложенной ситуации. При этом может потребоваться разработать объяснения или аргументацию с учетом контекста проблемы. Приведем пример.

БЫТОВЫЕ ОТХОДЫ

Выполняя домашнее задание, связанное с охраной окружающей среды, ученик собрал информацию относительно разложения некоторых видов мусора, который выбрасывают люди:

Вид мусора	Срок разложения
Кожура банана	1 – 3 года
Кожура апельсина	1 – 3 года
Картонные коробки	0,5 года
Жевательная резинка	20 — 25 лет
Газеты	Несколько дней
Чашка из полистирола	Более 100 лет

Ученик решил изобразить полученные данные на столбчатой диаграмме.

Приведите одну причину, по которой столбчатая диаграмма является неудачной формой для представления этих данных.

ОЦЕНКА ОТВЕТА НА ВОПРОС

Ответ принимается полностью

Код 1: Указана причина, связанная с большим различием между данными таблицы.

Примеры ответов учащихся:

- Различие в высоте столбцов на диаграмме будет слишком большим.
- Если для полистирола взять столбик высотой 10 см, то для картонных коробок он будет высотой 0,05 см.