ОБРАЗОВАТЕЛЬНЫЙ МИНИМУМ

Полугодие	1
Предмет	Математика
Класс	11

СВОЙСТВА КОРНЕЙ

1)
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
; 2) $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$; 3) $(\sqrt[n]{a})^n = a$;

4)
$$\sqrt[n]{a^n} = |a| \quad n - \text{четный};$$
 5) $\sqrt[n]{a^n} = a \quad n - \text{нечетный};$

6)
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$
; 7) $\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}$.

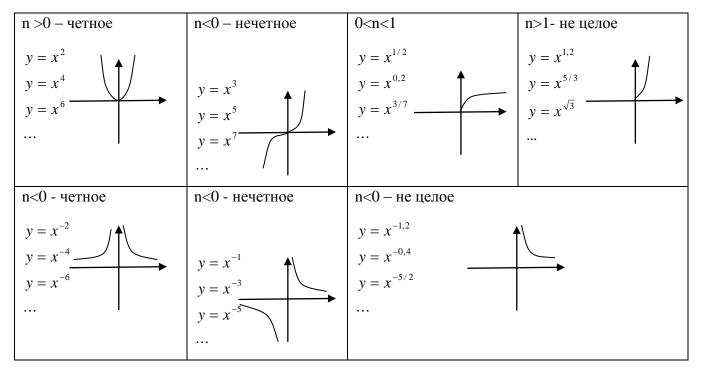
СВОЙСТВА СТЕПЕНЕЙ

1)
$$a^m \cdot a^n = a^{m+n}$$
 2) $a^m : a^n = a^{m-n}$ 3) $\frac{a^m}{a^n} = a^{m-n}$ 4) $(a^m)^n = a^{m \cdot n}$

5)
$$(ab)^n = a^n \cdot b^n$$
 6) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 7) $a^{-n} = \frac{1}{a^n}$ 8) $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$ 9) $a^0 = 1$

СТЕПЕННАЯ ФУНКЦИЯ

$$y = x^n$$
, $r \partial e$ $n \in \mathbb{R}$, $n \neq 0$, $n \neq 1$



1. Логарифм числа b по основанию а	показатель степени, в которую нужно возвести основание a , чтобы получить число b , $b>0$, $a>0$, $a \ne 1$
2.Основное логарифмическое тождество	$a^{\log_a b}$ =b, где b>0, a>0, a≠1
3. Логарифм числа 1 по основанию а	$\log_a 1=0, a>0, a\neq 1$

4. Логарифм числа а по основанию а	$\log_a a = 1, a > 0, a \neq 1$
5.Логарифм произведения	$\log_a xy = \log_a x + \log_a y$, a>0, a \neq 1, x>0, y>0
6.Логарифм частного	$\log_a \frac{x}{y} = \log_a x - \log_a y, \ a > 0, \ a \neq 1, \ x > 0, \ y > 0$
7.Логарифм степени	$\log_a x^p = \operatorname{plog}_a x, a > 0, a \neq 1$
8. Формула перехода от одного основания логарифма к другому	$\log_a x = \frac{\log_b x}{\log_b a}$, a>0, a≠1, x>0, b>0, b≠1
9.Натуральный логарифм	$ \ln x = \log_e x $

Расстояние между точками, или длина вектора AB.	$A(x_1; y_1; z_1) \text{и} B(x_2; y_2; z_2)$ $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Координаты середины отрезка с концами $A(x_1; y_{1;}z_1); B(x_2; y_2; z_2)$	$x = \frac{x_1 + x_2}{2}; \qquad y = \frac{y_1 + y_2}{2} z = \frac{z_1 + z_2}{2}$ $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$
Уравнение окружности с радиусом R и с центром $(x_0; y_{0;}z_0)$	$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$
Если $(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$, то координаты вектора \overrightarrow{AB} :	$\{x_2-x_1; y_2-y_1; z_2-z_1\}$
Сложение и вычитание векторов	$\vec{a} \{a_1; a_2; a_3;\} \pm \vec{b} \{b_1; b_{21}; b_3\} = \{a_1 \pm b_1 \pm a_3; a_2 \pm b_2 \pm b_3\}$
Умножение вектора на число <i>\lambda</i>	$ \overline{\{a_1; a_2; a_3\}} \lambda = \overline{\{\lambda a_1; \lambda a_2; \lambda a_3\}} $
Скалярное произведение векторов	$\vec{a} \{a_1; a_2; a_3; \}; \vec{b} \{b_1; b_{21}; b_3\}$ $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$
Косинус угла между векторами	
$\vec{a} \{a_1; a_2; a_3; \}; \vec{b} \{b_1; b_{21}; b_3\}$	$\cos\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{a_1 s_1 + a_2 s_2 + a_3 s_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \bullet \sqrt{s_1^2 + s_2^2 + s_3^2}}$