Приложение к ФОП СОО

Муниципальное автономное общеобразовательное учреждение города Набережные Челны «Средняя общеобразовательная школа №4"

Принято на педагогическом совете Протокол № 1 от 29.08.2023 г.

Утверждаю Директор школы Асаинов А. А. Приказ № 251 от 29.08.2023г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА НА УРОВЕНЬ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

«Химия: теория и практика в задачах»

Рабочая программа по учебному курсу «Химия: теория и практика в задачах» на уровень среднего общего образования составлена с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию благоприятных условий для развития социально значимых отношений обучающихся и прежде всего ценностных ориентиров (целевых приоритетов): Развитие ценностного отношения:

- к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне;
- к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека;
- к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда.

Экологическое воспитание:

понимающий значение и глобальный характер экологических проблем, путей их решения, значение экологической культуры человека, общества;

сознающий свою ответственность как гражданина и потребителя в условиях взаимосвязи природной, технологической и социальной сред;

выражающий активное неприятие действий, приносящих вред природе;

ориентированный на применение знаний естественных и социальных наук для решения задач в области охраны природы, планирования своих поступков и оценки их возможных последствий для окружающей среды;

участвующий в практической деятельности экологической, природоохранной направленности.

Ценности научного познания:

выражающий познавательные интересы в разных предметных областях с учётом индивидуальных интересов, способностей, достижений;

ориентированный в деятельности на научные знания о природе и обществе, взаимосвязях человека с природной и социальной средой;

развивающий навыки использования различных средств познания, накопления знаний о мире (языковая, читательская культура, деятельность в информационной, цифровой среде);

демонстрирующий навыки наблюдений, накопления фактов, осмысления опыта в естественнонаучной и гуманитарной областях познания, исследовательской деятельности.

Содержание учебного курса 10 класса «Химия: теория и практика в задачах»

Основы органической химии

Роль и место расчетных задач в системе обучения химии и практической жизни.

Основы органической химии

Расчеты по химическим формулам. Вещества.

Основные понятия и законы химии. Закон сохранения массы веществ, закон постоянства состава, закон Авогадро. Количество вещества, моль, молярная масса, молярный объем газов. Массовая доля. Вычисление массовой доли химического элемента в соединении. Вычисление массы растворенного вещества, содержащегося в определённой массе раствора с известной массовой долей, вычисление массовой доли вещества в растворе. Вывод химической формулы вещества по массовым долям элементов. Относительная плотность газов. Установление простейшей формулы вещества по массовым долям элементов с использованием абсолютной и относительной плотности вещества. Вывод формулы вещества по относительной плотности газов и массе (объему или количеству) продуктов сгорания.

Основы органической химии

Вычисления по уравнениям химических реакций. Генетическая связь между классами органических соединений. Химические реакции. Уравнения химических реакций. Вычисление массы (количества, объема) вещества по известной массе (количеству, объему) одного из вступивших в реакцию или получившихся веществ. Вычисление массы (объёма, количества) вещества продуктов реакции, если одно из веществ дано в виде раствора с определённой массовой долей растворенного вещества. Вычисление массы (количества, объема) продукта реакции, если одно из исходных веществ дано в избытке. Вычисление массы (объема) продукта реакции по известной массе (объему) исходного вещества, содержащего определенную массовую долю примесей.

Вычисление массовой или объемной доли выхода продукта реакции от теоретически возможного. Вычисление процентного состава смеси веществ, вступивших в реакцию.

Химические свойства углеводородов и способы их получения.

Схемы превращений, отражающие генетическую связь между углеводородами: открытые, закрытые смешанные.

Схемы превращений, отражающие генетическую связь между углеводородами и кислородсодержащими органическими соединениями. Схемы превращений, отражающие генетическую связь между углеводородами, кислородсодержащими и азотсодержащими органическими соединениями.

Практикум: составление схем превращений, отражающих генетическую связь между классами органических соединений.

Решение комбинированных задач.

Основы органической химии. Качественные задачи. Качественные реакции на неорганические вещества и ионы. Качественные реакции органических соединений. Идентификация органических соединений, алгоритм идентификации. Алгоритм обнаружения органических соединений.

Содержание учебного курса «Химия: теория и практика в задачах» 11 класс

Химический элемент

Строение и состав атома. Составление электронных и электронно-графических формул атомов химических элементов. Валентность и степень окисления химических элементов.

Периодический закон. Сравнительная характеристика химических элементов по их положению в периодической системе химических элементов и строению атома.

Вещество

Теория строения органических соединений. Изомерия – структурная и пространственная. Гомологи и гомологический ряд.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа. Классификация и номенклатура органических соединений.

Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов. Природные источники углеводородов, их переработка. Механизмы реакций присоединения в органической химии. Правило В.В. Марковникова, правило Зайцева А.М.

Характерные химические свойства ароматических углеводородов: бензола и толуола.

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. Биологически важные вещества: углеводы (моносахариды, дисахариды, полисахариды). Реакции, подтверждающие взаимосвязь углеводородов и кислородсодержащих органических соединений.

Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Биологически важные вещества: жиры, белки, нуклеиновые кислоты. Гормоны. Ферменты.

Способы выражения концентрации растворов (массовая, молярная) Правило смешения растворов, («правило креста»). Кристаллогидраты.

Химические реакции

Классификация химических реакций. Термохимические уравнения реакций. Тепловой эффект реакции. Закон Гесса. Расчеты объемных отношений газов при химических реакциях.

Энтальпия реакций. Скорость химической реакции, ее зависимость от различных факторов. Химическое равновесие. Смещение химического равновесия под действием различных факторов. Константа равновесия.

Реакции в растворах электролитов. Реакции ионного обмена. Гидролиз солей, рН растворов. Реакции окислительно-восстановительные, их классификация. Типичные окислители и восстановители. Окислительно-восстановительные свойства некоторых веществ. Коррозия металлов и способы защиты от неё.

Познание и применение веществ

Электролиз расплавов и растворов (солей, щелочей, кислот).

Вычисление массы или объёма продукта реакции по известной массе или объёму исходного вещества, содержащего примеси. Вычисление массы (объёма) компонентов смеси веществ полностью или частично взаимодействующие с реагентом.

Практикум: составление схем превращений, отражающих генетическую связь между классами органических и неорганических соединений. Решение комбинированных задач. Нахождение молекулярной формулы вещества.

Планируемые результаты освоения учебного курса «Химия: теория и практика в задачах»

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

ФГОС СОО устанавливает требования к результатам освоения обучающимися программ среднего общего образования (личностным, метапредметным и предметным). Научно-методической основой для разработки планируемых результатов освоения программ среднего общего образования является системно-деятельностный подход.

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения предмета «Химия» на уровне среднего общего образования выделены следующие составляющие:

осознание обучающимися российской гражданской идентичности – готовности к саморазвитию, самостоятельности и самоопределению;

наличие мотивации к обучению;

целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций базовой науки химии;

готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими целостной системе химического образования;

наличие правосознания экологической культуры и способности ставить цели и строить жизненные планы.

Личностные результаты освоения предмета «Химия» достигаются в единстве учебной и воспитательной деятельности в соответствии с гуманистическими, социокультурными, духовно-нравственными ценностями и идеалами российского гражданского общества, принятыми в обществе нормами и правилами поведения, способствующими процессам самопознания, саморазвития и нравственного становления личности обучающихся.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии;

уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе, как источнику существования жизни на Земле;

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

сформированности мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённости в особой значимости химии для современной цивилизации: в её гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для

анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию и исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения учебного предмета «Химия» на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, всесторонне её рассматривать;

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать при освоении знаний приёмы логического мышления — выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций; устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления – химический знак (символ) элемента, химическая формула, уравнение химической реакции – при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

ориентироваться в различных источниках информации (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и обмена мнениями.

Овладение универсальными регулятивными действиями:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях;

осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки.

Предметные результаты освоения программы учебного курса.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

10 КЛАСС

Предметные результаты освоения курса «Органическая химия» отражают:

сформированность представлений о химической составляющей естественнонаучной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает: основополагающие понятия (химический элемент, атом, электронная оболочка атома, молекула, валентность, электроотрицательность, химическая связь, структурная формула (развёрнутая и сокращённая), моль, молярная масса, молярный объём, углеродный функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород и азотсодержащие соединения, мономер, полимер, структурное звено, высокомолекулярные соединения); теории и законы (теория строения органических веществ А. М. Бутлерова, закон сохранения массы веществ); закономерности, символический язык химии; мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших органических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений;

сформированность умений использовать химическую символику для составления молекулярных и структурных (развёрнутой, сокращённой) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения;

сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определённому классу/группе соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC), а также приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин);

сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные);

сформированность умения применять положения теории строения органических веществ А. М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ;

сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза, крахмал, целлюлоза, аминоуксусная кислота), иллюстрировать

генетическую связь между ними уравнениями соответствующих химических реакций с использованием структурных формул;

сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки;

сформированность умений проводить вычисления по химическим уравнениям (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции);

сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых органических веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефноточечную систему обозначений Л. Брайля для записи химических формул.

11 КЛАСС

Предметные результаты освоения курса «Общая и неорганическая химия» отражают:

сформированность представлений: о химической составляющей естественнонаучной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает: основополагающие понятия (химический элемент, атом, изотоп, s-, p-, d- электронные орбитали атомов, ион,

молекула, моль, молярный объём, валентность, электроотрицательность, степень окисления, химическая связь (ковалентная, ионная, металлическая, водородная), кристаллическая решётка, типы химических реакций, электролиты, раствор, неэлектролиты, электролитическая диссоциация, окислитель, восстановитель, скорость реакции, химическое равновесие); теории И законы (теория электролитической диссоциации, периодический закон Д. И. Менделеева, закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях), закономерности, символический язык химии, мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании неорганических веществ и их превращений;

сформированность умений использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных неорганических веществ (угарный газ, углекислый газ, аммиак, гашёная известь, негашёная известь, питьевая сода, пирит и другие);

сформированность умений определять валентность и степень окисления химических элементов в соединениях различного состава, вид химической связи (ковалентная, ионная, металлическая, водородная) в соединениях, тип кристаллической решётки конкретного вещества (атомная, молекулярная, ионная, металлическая), характер среды в водных растворах неорганических соединений;

сформированность умений устанавливать принадлежность неорганических веществ по их составу к определённому классу/группе соединений (простые вещества – металлы и неметаллы, оксиды, основания, кислоты, амфотерные гидроксиды, соли);

сформированность умений раскрывать смысл периодического закона Д. И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции;

сформированность умений характеризовать электронное строение атомов химических элементов 1–4 периодов Периодической системы химических элементов Д. И. Менделеева, используя понятия «s-, p-, d-электронные орбитали», «энергетические уровни», объяснять закономерности изменения свойств химических элементов и их соединений по периодам и группам Периодической системы химических элементов Д. И. Менделеева;

сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций;

сформированность умения классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости реакции, участию катализатора);

сформированность умений составлять уравнения реакций различных типов, полные и сокращённые уравнения реакций ионного обмена, учитывая условия, при которых эти реакции идут до конца;

сформированность умений проводить реакции, подтверждающие качественный состав различных неорганических веществ, распознавать опытным путём ионы, присутствующие в водных растворах неорганических веществ;

сформированность умений раскрывать сущность окислительно-восстановительных реакций посредством составления электронного баланса этих реакций;

сформированность умений объяснять зависимость скорости химической реакции от различных факторов; характер смещения химического равновесия в зависимости от внешнего воздействия (принцип Ле Шателье);

сформированность умений характеризовать химические процессы, лежащие в основе промышленного получения серной кислоты, аммиака, а также сформированность представлений об общих научных принципах и экологических проблемах химического производства;

сформированность умений проводить вычисления с использованием понятия «массовая доля вещества в растворе», объёмных отношений газов при химических реакциях, массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, теплового эффекта реакции на основе законов сохранения массы веществ, превращения и сохранения энергии;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, влияние различных факторов на скорость химической реакции, реакции ионного обмена, качественные реакции на сульфат-, карбонат- и хлорид-анионы, на катион аммония, решение экспериментальных задач по темам «Металлы» и «Неметаллы») в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой коммуникации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефноточечную систему обозначений Л. Брайля для записи химических формул.

Решать задачи:

- вычисление массы растворенного вещества, содержащегося в определенной массе раствора с известной массовой долей;
 - расчеты: объемных отношений газов при химических реакциях;
- расчеты: массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ;
 - расчеты: теплового эффекта реакции;

- расчеты: массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси);
- расчеты: массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
 - нахождение молекулярной формулы вещества;
- расчеты: массовой или объемной доли выхода продукта реакции от теоретически возможного;
 - расчеты: массовой доли (массы) химического соединения в смеси;
- составление цепочек генетической связи химических соединений (неорганическая химия и органическая химия).

Тематическое планирование

10 класс

Название раздела	Количество	Контрольные	Электронные (цифровые)
	часов	/практические	образовательные
	работы		ресурсы
Основы органической химии	1		Библиотека ЦОК
Роль и место расчетных задач в системе			https://m.edsoo.ru
обучения и практической жизни.			Библиотека РЭШ
			https://resh.edu.ru
Основы органической химии	8	0/1	Библиотека ЦОК
Расчеты по химическим формулам.			https://m.edsoo.ru
			Библиотека РЭШ
			https://resh.edu.ru
Основы органической химии	23	3/1	Библиотека ЦОК
Вычисления по уравнениям химических			https://m.edsoo.ru
реакций. Генетическая связь между классами			Библиотека РЭШ
органических веществ.			https://resh.edu.ru
Основы органической химии	2		Библиотека ЦОК
Качественные задачи.			https://m.edsoo.ru
			Библиотека РЭШ
			https://resh.edu.ru
	34		

Тематическое планирование

11 класс

Название раздела	Количество часов	Контрольн ые /практичес кие работы	Электронные (цифровые) образовательные ресурсы
Химический элемент. Расчеты: массовой доли	4		Библиотека ЦОК
(массы) химического соединения в смеси;			https://m.edsoo.ru

			Библиотека РЭШ https://resh.edu.ru
Вещество. Расчеты: массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); - расчеты: массы (объема, количества вещества)	12	0/1	Библиотека ЦОК https://m.edsoo.ru Библиотека РЭШ https://resh.edu.ru
продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества; - нахождение молекулярной формулы вещества;			
Химические реакции. Составление цепочек генетической связи химических соединений (неорганическая химия и органическая химия).	10	3/1	Библиотека ЦОК https://m.edsoo.ru Библиотека РЭШ https://resh.edu.ru
Познание и применение веществ.	8		Библиотека ЦОК https://m.edsoo.ru Библиотека РЭШ https://resh.edu.ru
	34		